İSPATI:
Teoremin ispatında yararlanılacak kurallar:
- bir üçgenin iç açıları toplamı iki dik açıya (180°) eşittir,
- ikizkenar üçgenlerin taban açıları birbirine eşittir.
O çemberin merkezi olarak alınsın. OA = OB = OC olduğundan, OBA ile OBC birer ikizkenar üçgendir; ikizkenar üçgenin taban açılarının eşitliğinden, OBC = OCB ve BAO = ABO yazılır. α = BAO ve β = OBC diye adlandırılsın. ABC üçgenin iç açıları α, α + β ve β olacaktır. İç açılar toplamının iki dik açıya eşitliğinden
yani
ya da sadeleştirilirse
- AC çap olduğu sürece, B açısı sabit ve dik açıdır.
- Bir üçgenin çevrel çemberinin merkezi, ancak ve ancak bir dik üçgen ise üçgenin kenarları üzerindedir.
- bir paralelkenarın karşılıklı açıları bütünlerdir (toplamları 180°),
- bir dikdörtgenin köşegenleri eşit uzunluktadır ve birbirlerini orta noktalarında keserler.
- iki doğru arasında ancak ve ancak doğrultu vektörlerinin skaler çarpımı sıfırsa, dik açı bulunur
- bir vektörün boyutunun karesi, vektörün kendisiyle skaler çarpımıyla bulunur.
- A = − C, çünkü AC çaplı çemberin merkezinde orijinde ve
- (A − B) · (B − C) = 0, ABC dik açı.
- 0 = (A − B) · (B − C) = (A − B) · (B + A) = |A|2 − |B|2.
- |A| = |B|.
TERSİ:
Thales teoreminin evirilmiş hali de geçerlidir; yani bir dik üçgenin hipotenüsü, üçgenin çevrel çemberinin çapıdır.
Thales teoremiyle evirimi birleştirildiğinde elde edilecek ifade:
Geometriyle ispatı
İspat dik üçgen dikdörtgene tamamlanarak ve dikdörtgenin merkezinin köşelere eşit uzaklıkta, dolayısıyla orijinal üçgenin çevrel çemberinin merkezi, olduğu göz önüne alınarak yapılır. İki bilgi kullanılır:
ABC dik açısı, A'dan geçen BC'ye paralel r doğrusu ve C'den geçen AB'ye paralel s doğrusu alınsın. D r ile s doğrularının kesişim noktası olarak tanımlansın. (henüz D'nin çember üzerinde olduğu kesin değil)
Oluşan ABCD dörtgeni bir paralelkenardır (karşılıklı kenarları birbirine paralel). Paralelkenarın karşılıklı açıları bütünler (toplamları 180°) ve ABC açısının dik açı (90°) olduğu bilindiğinden BAD, BCD ve ADC açıları da diktir; yani ABCD bir dikdörtgendir.
AC ve BD köşegenlerinin kesişim noktası O olsun. O noktası, yukarıdaki ikinci bilgiye göre, A, B ve C köşelerine eşit uzaklıktadır. Bu durumda O çevrel çemberin merkezi ve üçgenin hipotenüsü AC çemberin çapı olur.
Lineer cebirle ispatı
İspat için iki bilgi kullanılacaktır:
ABC dik açısı ve AC çaplı M çemberi alınsın. İşlemlerin basitleşmesi için M'in merkezi orijinde kabul edilsin. Buna göre
İfadeler düzenlenirse
Sonuçta:
Yukarıdaki bağıntıya göre A ile B orijine, diğer bir ifadeyle M 'nin merkezine, eşit mesafededir. A 'nın M üzerinde olduğu düşünüldüğünde, B de çember üzerinde yer alacaktır ve bu durumda M çemberi üçgenin çevrel çemberidir.
Yapılan tüm işlemler Thales teoreminin, her iki yönde de, herhangi bir iç çarpım uzayında geçerli olduğunu gösterir.
UYGULAMALARI
Thales teoremi yardımıyla bir çembere istenilen noktadan teğet çizilebilir. (Şekilde gösterildiği gibi) O merkezli bir k çemberi ve çember dışında bir P noktası alınarak, k'ye P'den geçen teğet(ler) (kırmızı) çizilmek istensin. Teğet doğrusu t'nin çembere T noktasında değdiği varsayalır (henüz bu bilinmiyor). Yarıçap OT teğete dik olacaktır. Sonrasında O ile P'nin orta noktasına H diyerek, O ile P'den geçen H merkezli bir çember çizilsin. Thales teoremine göre, istenen T noktası iki çemberin kesişim noktasıdır çünkü k üzerinde bulunur ve OTP dik üçgenini tamamlar.
Çemberlerin iki kesişimi olduğundan, bu yöntemle istenen noktadan geçecek iki teğet doğrusu da çizilebilir.
ALINTIDIR.
https://tr.m.wikipedia.org/wiki/Thales_teoremi_(çember)
Hiç yorum yok:
Yorum Gönder